The role of noradrenaline in the differentiation of amphibian embryonic neurons.

نویسندگان

  • S J Rowe
  • N J Messenger
  • A E Warner
چکیده

The possibility that monoamines might act as signalling molecules during the early development of the nervous system has been examined in embryos of the amphibian Xenopus laevis. The distributions of 5-hydroxytryptamine, dopamine, noradrenaline and their precursor, dopa, were determined from the fertilized egg up to the late neurula stages using High Performance Liquid Chromatography, formaldehyde-induced fluorescence and antibody staining. 5-hydroxytryptamine was not detected until the tail bud stage. The fertilized egg contained significant concentrations of dopa (10(-6) M) and dopamine (10(-7) M). Both monoamines persisted with little change in concentration up to the late neurula stage. Early neurula stage embryos contained very low levels of noradrenaline. Aldehyde-induced fluorescence showed that monoamines are localized in dorsal regions of the embryo, in ectoderm and mesoderm cells. Monoamines were not present in endoderm cells. Immunocytochemical staining showed dopamine predominantly in the ectoderm, except in future neural regions where it was found also in the mesoderm. Dopamine staining was always most intense in dorsal regions of the embryo. The consequences for subsequent neuronal differentiation of interfering with the biosynthesis and receptor binding of monoamines during neurulation was assayed. Neuronal differentiation was monitored quantitatively in cultures set up as the neural tube closed and qualitatively in intact tadpoles that were left to develop for two days after washout of test reagent. The number of neurons, the number of muscle cells and the total number of differentiated cells were counted after 18-24 hours of culture. Comparison of the number of neurons that differentiated from control and treated embryos showed that inhibition of dopamine beta-hydroxylase, the enzyme catalysing the conversion of dopamine to noradrenaline, during the neural plate stages reduced substantially subsequent neuronal differentiation. The differentiation of myocytes and the total number of differentiated cells were not affected. Exogenous noradrenaline (10(-6) M) or dopamine (10(-6) M) could increase the number of neurons that differentiated subsequently in culture. Interfering with noradrenaline binding to receptors with receptor antagonists during neurulation showed that alpha-adrenergic receptor antagonists reduced substantially the subsequent differentiation of neurons. The differentiation of myocytes and the total number of differentiated cells were not affected. The effect of alpha-adrenergic receptor antagonists was overcome by the simultaneous inclusion of noradrenaline or alpha-receptor agonists, but not agonists at beta-adrenergic receptors. The quantitative reduction in the differentiation of neurons was paralleled by defects in the Central Nervous System of intact tadpoles.(ABSTRACT TRUNCATED AT 400 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors

Objective(s): The stimulation of neural stem cells (NSCs) differentiation into neurons has attracted great attention in management of neurodegenerative disease and traumatic brain injury. It has been reported that selegiline could enhance the morphologic differentiation of embryonic stem cells. Therefore this study aimed to investigate the effects of selegiline on NSCs differentiation with focu...

متن کامل

Cholinergic Differentiation of neural precursor cells derived from mouse embryonic stem cells increased by Shh, LIF and RA

Introduction Cholinergic system is one of the important systems of mammalian CNS. Cholinergic neurons distributed in brain and spinal cord and contributed to principal functions like: consciousness, learning and memory, and motor control. In this study we investigated the differentiation potentiality of mouse embryonic stem cells toward cholinergic neurons. The aim of this study was to evaluate...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 119 4  شماره 

صفحات  -

تاریخ انتشار 1993